Наверх
Москва: +7 (495) 150-07-50
Санкт-Петербург: +7 (812) 407-11-69
Заказать обратный звонок
Бесплатно из регионов России:
пн-вс: 8.00 - 19.00

Параметрический стабилизатор напряжения

Параметрические стабилизаторы напряжения изготавливаются, как правило, с применением транзисторов, стабисторов и стабилитронов.

Данное устройство характеризуется невысоким КПД, вследствие чего используются в качестве модулей слаботочных схем, в которых имеются нагрузки не выше пары десятков миллиампер. Чаще всего они распространены в компенсационных стабилизирующих устройствах в роли опорных источников напряжения.

Параметрические стабилизаторы напряжения подразделяются на мостовые, однокаскадные и многокаскадные.

Принцип работы параметрических стабилизаторов напряжения

Представляем схему простого устройства данного типа, в основе которого находится стабилитрон:

  • Iст - электроток через стабилитрон
  • Iн - электроток нагрузки
  • Uвых=Uст - стабилизированное напряжение на выходе
  • Uвх - нестабилизированное напряжение на входе
  • R0 - балластный (гасящий, ограничивающий) резистор

Основным свойством стабилитрона, на базе которого функционирует параметрический стабилизатор напряжения, является то, что U на нем в рабочем диапазоне вольт-амперной характеристики (от Iст min до Iст max) остается практически прежним. При этом изменения происходят от Uст min до Uст max, однако при этом принято подразумевать, что Uст min = Uст max = Uст).

Составленная схема параметрического стабилизатора напряжения дает понять, что коррекция тока нагрузки либо входного U не происходит (он сохраняет те же значения, что и на стабилитроне). Но при этом происходят изменения тока, проходящего через стабилитрон, а при изменении напряжения на входе выполняется корректировка тока, двигающегося по балластному резистору. В результате в балластном резисторе происходит гашение излишков напряжения на входе. Значение этого падения зависят от проходящего через него тока, который, в свою очередь, взаимосвязан с электротоком через стабилитрон. В силу этого любая коррекция электротока через стабилитрон напрямую отражается на величине падения U, отмечаемой в балластном резисторе.

Для описания принципа данной схемы используется уравнение:

Uвх=Uст+IR0, где с учетом I=Iст+Iн, получается, что

Uвх=Uст+(Iн+Iст)R0 (1)

Для безукоризненного функционирования параметрического стабилизатора напряжения , которое определяется U на нагрузке в пределах от Uст min до Uст max, требуется следить за тем, чтобы через стабилитрон ток всегда оставался в границах от Iст min до Iст max. В частности, минимальные параметры тока через стабилитрон взаимосвязаны с минимальным U на входе и максимальной величиной электротока нагрузки.

Сопротивление балластного резистора устанавливается следующим образом:

R0=(Uвх min-Uст min)/(Iн max+Iст min) (2)

Максимальные параметры тока через стабилитрон взаимосвязаны с максимальным напряжением на входе и минимальной величиной электротока нагрузки Вследствие этого, используя уравнение (1), достаточно просто устанавливается область, в которой параметрический стабилизатор напряжения функционирует нормально.

Расчет области нормального функционирования стабилизирующего устройства:

∆Uвх=Uвх max–Uвх min=Uст max+(Iн min+Iст max)R0–(Uст min+(Iн max+Iст min)R0)

Выполнив перегруппировку этого выражения, получаем:

∆Uвх=(Uст man-Uст min)+(Iст max-Iст min)R0–(Iн min-Iн min)R0

Или иной метод:

∆Uвх=∆Uст+∆IстR0+∆IнR0

Если взять во внимание незначительные отличия между минимумом и максимумом напряжения стабилизации (Uст min и Uст max), то значение первого слагаемого в правой части уравнения можно привести к нулю, что, в итоге, создает уравнение, описывающее область нормальный функционал прибора, приобретающее следующую форму:

∆Uвх=∆IстR0-∆IнR0 (3)

В случае постоянного тока нагрузки либо с незначительными изменениями, применяемая для установления области нормального функционала устройства формула переходит в разряд элементарных:

∆Uвх=∆IстR0 (4)

Расчет КПД параметрических стабилизаторов

На следующем этапе установим КПД рассматриваемого параметрического стабилизатора напряжения. Для его определения используется отношение мощности, которая уходит в нагрузку к мощности на входе в устройство:

КПД=UстIн/UвхI.

С учетом I=Iн+Iст получаем:

КПД=(Uст/Uвх)/(1+Iст/Iн)

Последняя приведенная формула показывает, что увеличение разницы между U на входе и выходе стабилизатора соответствует повышенному значению тока через стабилитрон, что существенно ухудшает КПД.

Пример оценки КПД

Для того, чтобы полноценно оценить «негативные» характеристики КПД, используем приведенные выше формулы, но при этом условно снизим напряжение до 5 Вольт. Для этого используем стандартный стабилитрон, например, КС147А. Согласно характеристикам ток в нем может изменяться в диапазоне от 3-х до 53-х мА.

Согласно условиям, нам требуется получить область нормального функционирования, ширина которой составляет 4 Вольта. Для этого необходимо взять балластный резистор в 80 Ом. С учетом постоянного тока нагрузки используем формулу 4 (иные параметры значительно «ухудшают» положение). На основе этого можно вычислить, применяя формулу 2, расчет на какие значения тока в данной ситуации следует рассчитывать. В результате имеем 19,5 мА, причем КПД на таких условиях составит, в зависимости от U на входе, 14%-61%.

Для того, чтобы просчитать максимальные значения выходного тока в этих же условиях, необходимо поменять в них значение тока с постоянного на изменяющийся в диапазоне от нуля до Imax. Тогда одновременно решая уравнения 2 и 3, получаем R0=110 Ом, Imax=13,5 мА. Таким образом, очевидно, что максимум тока стабилитрона в четыре раза превышает максимальное значение тока на выходе.

Недостатком параметрического стабилизатора можно назвать то, что напряжение на выходе отличается внушительной нестабильностью, напрямую завися от тока на выходе, что делает неприемлемым дальнейшую эксплуатацию прибора.

В итоге, с уверенностью можно сказать, что параметрический стабилизатор напряжения обладает лишь одним преимуществом - простым исполнением. Благодаря этому данные устройства продолжают свое существование и даже характеризуются массовым использованием в достаточно сложных схемах, как уже отмечалось, в роли опорного источника напряжения.